EFECTO DE LA DENSIDAD DE POBLACION SOBRE LOS COMPONENTES DEL RENDIMIENTO EN SOYA (Glycine max L. Merr)

M.C. Alfonso de Luna Jiménez
Programa de Investigación Agrícola/ Subprograma de cultivos básicos.

RESUMEN

En 1992, se evaluaron 2 variedades de soya con 5 densidades de población cada una, el objetivo fue determinar bajo cual densidad se expresan mejor los componentes del rendimiento. A la cosecha la densidad real en miles de plantas/ha para Davis fue de 1540, 940, 350, 220 y 140, y para BMz fue de 1340, 620, 310, 160 y 100, miles de plantas /ha.

Los rendimientos de paja más grano por densidad de población para la variedad Davis fueron de 22, 14, 15, 11 y 13 ton/ha y de 15, 12, 10, 9 y 7 ton/ha para BMz.

INTRODUCCION

El propósito de esta investigación es lograr un mejor conocimiento de la importancia que tiene la densidad de población en el crecimiento y rendimiento de la soya. Existe poca información acerca de los niveles de población adecuados para obtener los rendimientos máximos de grano. Además, no se conocen trabajos de investigación que relacionen a la densidad de población con la modificación de la arquitectura de la planta.

Las características agronómicas y los componentes del rendimiento como son altura de planta, altura al nudo portador de la primera vaina, diámetro del tallo principal, porcentaje de acame, número de ramas por planta, número de nudos en el tallo principal, distancia entre nudos, número de vainas por planta, peso de 100 vainas y peso de 100 semillas, son buenos indicadores del potencial de rendimiento biológico de un determinado genotipo. Estas características son modificadas en su expresión por las condiciones del medio ambiente en el cual se desarrolla el cultivo, condiciones que varían entre estaciones, localidades y años. Cualquier variación marcada en el medio ambiente provoca una tensión en la planta, como puede ser el sombreado, nutrición inadecuada, vientos fuertes, daños por plagas y enfermedades, temperaturas extremas, entre otros, que altera el rendimiento de la planta.

De manera específica, esta investigación aporta el conocimiento del efecto de las densidades de población estudiadas sobre la expresión fenotípica y componentes del rendimiento en particular de las variedades comerciales de soya, Davis y BMz.

CUADRO I. ALGUNOS INVESTIGADORES QUE HAN ESTUDIADO DENSIDADES DE POBLACION SOBRE EL RENDIMIENTO DE GRANO EN SOYA (Glycine max L. Merr)

<table>
<thead>
<tr>
<th>INVESTIGADOR</th>
<th>AÑO</th>
<th>DENSIDAD DE POBLACION PARA ÓPTIMOS RENDIMIENTOS (miles/hec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiggans</td>
<td>1939</td>
<td>650</td>
</tr>
<tr>
<td>Carter y Hartwing</td>
<td>1962</td>
<td>217-432</td>
</tr>
<tr>
<td>Probst</td>
<td>1945</td>
<td>164-263</td>
</tr>
<tr>
<td>Weber</td>
<td>1966</td>
<td>129</td>
</tr>
<tr>
<td>Johnson y Harris</td>
<td>1967</td>
<td>248</td>
</tr>
<tr>
<td>Banafunzi y Vicuña</td>
<td>1976</td>
<td>266</td>
</tr>
<tr>
<td>Banafunzi y Salgado</td>
<td>1976</td>
<td>280</td>
</tr>
<tr>
<td>Maia, et al</td>
<td>1977</td>
<td>400</td>
</tr>
<tr>
<td>Domínguez y Hume</td>
<td>1978</td>
<td>800</td>
</tr>
<tr>
<td>Banafunzi y Salgado</td>
<td>1978</td>
<td>1130</td>
</tr>
<tr>
<td>Gordon, et al</td>
<td>1979</td>
<td>375</td>
</tr>
<tr>
<td>Monasterio</td>
<td>1980</td>
<td>300</td>
</tr>
<tr>
<td>Elshabokie</td>
<td>1982</td>
<td>600</td>
</tr>
<tr>
<td>Vecchio</td>
<td>1986</td>
<td>250-450</td>
</tr>
</tbody>
</table>

1 Profesor-Investigador del Centro Agropecuario
REVISIÓN DE LITERATURA

Varios investigadores han estudiado el efecto de la densidad de población sobre el rendimiento de grano en el cultivo de la soya con resultados variables (Cuadro 1).

Wiggans, (13) reportó que 650,000 plantas por hectárea produjeron el máximo rendimiento de grano de soya independientemente del método de distribución. Por su parte Probst, (11) encontró que los más altos rendimientos de grano se logran en densidades de 164,000 y 263,000 plantas por hectárea en surcos de 76 cm de separación. Mientras que Carter y Hartwing (3) concluyeron que el rendimiento ideal es obtenido con densidades de 217,000 a 432,000 plantas por hectárea. Weber, et al (12) concluyeron en que los máximos rendimientos se obtienen con 129,000 plantas por hectárea y para Johnson y Harris, (9), los rendimientos más altos se logran con 248,000 plantas por hectárea.

Hicks, et al (8) observaron que cuando ocurría un acame severo los rendimientos se producían conforme se incrementaba la densidad de población y que la altura a la primera vaina se incrementó al aumentarse la población. Cooper (4) reportó que existe una correlación positiva entre el incremento de las densidades de población y el porcentaje de acame. Siendo complementado por Fontes y Ohlrogge (6) quienes encontraron que por encima de ciertas poblaciones críticas, el acame llegó a ser muy importante y los rendimientos ganados por el incremento del número de plantas fueron más pequeños que las pérdidas atribuidas al acame. Además, estos investigadores afirman que los componentes del rendimiento cambian en la medida que la población aumenta, específicamente, el número de semillas, vainas y ramas por planta muestran una disminución lineal conforme se incrementa la población.

Con referencia al efecto de la población sobre los rendimientos de fríjol soya en regiones de baja latitud, Banafunzi y Vicuña (2) reportaron que los rendimientos se incrementaron con 266,000 plantas por hectárea a 75 cm de separación entre surcos durante el verano (estación de lluvias y fotoperíodo largo) con la variedad Kahala. Banafunzi y Salgado (1) concluyeron que los máximos rendimientos se alcanzan con aproximadamente 280,000 plantas por hectárea en surcos de 75 cm de separación con la variedad BMv. Además estos mismos investigadores encontraron incrementos de rendimiento de la línea CM cultivada en otoño (estación seca y fotoperíodo corto) con un espaciamiento entre hileras de 38 cm y 1’ 130,000 plantas por hectárea, por lo que concluyeron que la densidad de población con la que se obtienen los máximos rendimientos depende de la longitud del día, época de cultivo y de las características de crecimiento del genotipo en cuestión. Por otra parte Lueschem y Hicks (10), reportaron que el aumento de la densidad de población tiene poco efecto sobre el rendimiento. Opuesamtamente Domínguez y Hume (5), encontraron rendimientos óptimos con una densidad de 800,000 plantas por hectárea con un espaciamiento entre surcos de 30 cm y Gordon et al (7) informaron que la variedad Williams sembrada el 10 de mayo, con un espaciamiento entre surcos de 37 cm y con 375,000 plantas por hectárea se alcanzaron los rendimientos más elevados.

MATERIALES Y MÉTODOS

La investigación en densidades de población en soya se realizó en el Campo Agrícola Experimental del Centro Agropecuario de la Universidad Autónoma de Aguascalientes en el ciclo agrícola primavera- verano de 1992.

El experimento fue establecido en camas de siembra construidas de ladrillo con dimensiones de 10 m de largo por 1 m de ancho y 0.30 m de altura. El piso de las camas fue aflojado con talache para que la raíz no encontrara esa zona compactada y su crecimiento se afectara. Enseguida, se preparó el suelo mezclando en partes iguales: tierra de labor de una parcela contigua, lama de arroyo y estiércol de bovino (seco y arremetido).

Se llenaron las camas con el suelo preparado, se aplicó agua suficiente para humedecer todo el espesor de suelo, se dejó en reposo una semana, con el propósito de que se uniformizara la humedad, enseguida con azadón se dio una pica para aflojar la superficie de las camas y permitir la entrada de aire a la profundidad de siembra.

En el experimento se estudiaron los factores variedad (V) y densidad de población (D) en un diseño factorial con arreglo en bloques completos al azar (Cuadro 2), con 5 repeticiones.
CUADRO 2. FACTORES, NIVELES Y TRATAMIENTOS EN EL EXPERIMENTO, 1992

<table>
<thead>
<tr>
<th>VARIEDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 = Davis$</td>
</tr>
<tr>
<td>$V_2 = BM_1$</td>
</tr>
<tr>
<td>$d_1 = 4000$</td>
</tr>
<tr>
<td>$d_2 = 1000$</td>
</tr>
<tr>
<td>$d_3 = 490$</td>
</tr>
<tr>
<td>$d_4 = 250$</td>
</tr>
<tr>
<td>$d_5 = 160$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMIENTOS (Combinación de niveles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1 d_1</td>
</tr>
<tr>
<td>v_1 d_2</td>
</tr>
<tr>
<td>v_1 d_3</td>
</tr>
<tr>
<td>v_1 d_4</td>
</tr>
<tr>
<td>v_1 d_5</td>
</tr>
</tbody>
</table>

Mediante la combinación de los niveles de los factores, se generaron 10 tratamientos, y aleatoriamente se asignaron a cada una de las camas que a su vez constituieron una repetición completa. De esta manera cada cama fue un bloque completo (10 m2) y se dividió en 10 unidades experimentales de 1 m2 cada una y a cada una de ellas se les asignó un tratamiento.

La siembra se realizó el 15 de mayo, las diferentes densidades de siembra se alcanzaron mediante la combinación de espaciamientos entre hileras y semillas (Figura 1). d_1 (400 semillas/m2), se alcanzó con espaciamientos de 5 cm entre hileras y semillas; d_2 (100 semillas/m2) con espaciamientos de 10 cm entre hileras y semillas; d_3 (49 semillas/m2) con espaciamientos de 15 cm entre hileras y semillas; d_4 (25 semillas/m2) con espaciamientos de 20 cm entre hileras y semillas de d_5 (16 semillas/m2) con espaciamientos de 25 cm entre hileras y semillas.

Figura 1. Ilustración del establecimiento de los tratamientos en cama de siembra.
A partir de la siembra, todos los tratamientos recibieron el mismo manejo. De esta forma todas las labores culturales (rieques, desherbes, fertilización, combate de plagas, etc.) se realizaron con igual eficiencia en todo el experimento. A la cosecha se contó el número total de plantas por unidad experimental (1 m²) en cada una de las cinco repeticiones, se obtuvo el promedio y se transformó para expresar la densidad de plantar por hectárea (Cuadro 3). Además del total de plantas por unidad experimental, se tomaron al azar 10 plantas y se midieron las variables diámetro del tallo por planta, número de ramas por planta, número de vainas por planta (Cuadros 4 y 5), peso de vainas por planta, peso de grano por planta y peso de 100 granos (Cuadros 6 y 7). Para cada una de estas variables se realizó el análisis de varianza y la prueba de comparación de medias (DMS).

RESULTADOS Y DISCUSION

CUADRO 3. DENSIDADES REALES (miles/ha) A LA COSECHA PROMEDIO DE CINCO REPETICIONES

<table>
<thead>
<tr>
<th>DENSIDADES PROGRAMADAS (Tratamientos)</th>
<th>DENSIDADES REALES</th>
<th>PROM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles/ha</td>
<td>DAVIDS miles/ha</td>
<td>BM, miles/ha</td>
</tr>
<tr>
<td>d₁ = 4000</td>
<td>1538</td>
<td>1338</td>
</tr>
<tr>
<td>d₂ = 1000</td>
<td>922</td>
<td>616</td>
</tr>
<tr>
<td>d₃ = 490</td>
<td>348</td>
<td>314</td>
</tr>
<tr>
<td>d₄ = 250</td>
<td>222</td>
<td>162</td>
</tr>
<tr>
<td>d₅ = 160</td>
<td>136</td>
<td>102</td>
</tr>
<tr>
<td>PROM.</td>
<td>633</td>
<td>506</td>
</tr>
</tbody>
</table>

Las densidades programadas fueron muy superiores a la densidad recomendada de 244,000 plantas por hectárea (Cuadro 3) la cual se logra sembrando 40 kg. de semilla sana y viable con una sembradora debidamente calibrada para que deposita las semillas con un espaciamiento de 5 cm y 82 cm de separación entre hileras.

El efecto observado con las altas densidades es una competencia muy marcada entre plantas para cada una de las variedades (Cuadro 3).

CUADRO 4. ALGUNAS CARACTERISTICAS AGRONOMICAS EN SOYA VARIEDAD DAVID BAJO CINCO DENSIDADES DE POBLACION

<table>
<thead>
<tr>
<th>DENSIDADES REALES A LA COSECHA</th>
<th>DIAMETRO DEL TALLO</th>
<th>RAMAS</th>
<th>VAINAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles/ha</td>
<td>mm</td>
<td>No.</td>
<td>No.</td>
</tr>
<tr>
<td>d₁ = 1538</td>
<td>6 ** a</td>
<td>3 ** a</td>
<td>26 ** a</td>
</tr>
<tr>
<td>d₂ = 922</td>
<td>7 ** a</td>
<td>3 ** a</td>
<td>31 ** a</td>
</tr>
<tr>
<td>d₃ = 348</td>
<td>8 ** ab</td>
<td>5 ** a</td>
<td>47 ** a</td>
</tr>
<tr>
<td>d₄ = 222</td>
<td>8 ** ab</td>
<td>6 ** ab</td>
<td>42 ** a</td>
</tr>
<tr>
<td>d₅ = 136</td>
<td>10 ** abc</td>
<td>8 ** abc</td>
<td>90 ** ab</td>
</tr>
<tr>
<td>F (.01) = **</td>
<td>DMS (.01) = 1.0</td>
<td>DMS (.01) = 2.69</td>
<td>DMS (.01) = 24.55</td>
</tr>
</tbody>
</table>

** = Diferencias altamente significativas (.01)
Los tratamientos con una misma letra son iguales y con letras diferentes son estadísticamente diferentes.

CUADRO 5. ALGUNAS CARACTERISTICAS AGRONOMICAS EN SOYA VARIEDAD BM, BAJO CINCO DENSIDADES DE POBLACION

<table>
<thead>
<tr>
<th>DENSIDADES REALES A LA COSECHA</th>
<th>DIAMETRO DEL TALLO</th>
<th>RAMAS</th>
<th>VAINAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles/ha</td>
<td>m m</td>
<td>No.</td>
<td>No.</td>
</tr>
<tr>
<td>d₁ = 1338</td>
<td>5 ** a</td>
<td>1 ** a</td>
<td>20 ** a</td>
</tr>
<tr>
<td>d₂ = 616</td>
<td>7 ** ab</td>
<td>2 ** a</td>
<td>32 ** a</td>
</tr>
<tr>
<td>d₃ = 314</td>
<td>7 ** ab</td>
<td>3 ** a</td>
<td>42 ** a</td>
</tr>
<tr>
<td>d₄ = 162</td>
<td>9 ** ab</td>
<td>5 ** ab</td>
<td>78 ** a</td>
</tr>
<tr>
<td>d₅ = 102</td>
<td>8 ** ab</td>
<td>6 ** abc</td>
<td>90 ** abc</td>
</tr>
<tr>
<td>F (.01) = **</td>
<td>DMS (.01) = 1.2</td>
<td>DMS (.01) = 2</td>
<td>DMS (.01) = 24.81</td>
</tr>
</tbody>
</table>

** = Diferencias altamente significativas (.01)
Los tratamientos con una misma letra son iguales y con letras diferentes son estadísticamente diferentes.
EFECTO DE LA DENSIDAD DE POBLACION SOBRE LOS COMPONENTES DEL RENDIMIENTO EN SOYA (Glycine max L. Merr.)

TRABAJO PRESENTADO EN EL PRIMER SIMPOSIO ESTATAL SOBRE LA INVESTIGACION Y EL DESARROLLO TECNOLOGICO EN AGUASCALIENTES 1994.
En los cuadros 4 y 5 se observa que la densidad más alta redujo significativamente el diámetro del tallo, el número de ramas/planta y el número de vainas/planta, mientras que las densidades más bajas incrementaron los valores de estas variables. Estos resultados confirmaron lo observado por Hicks, et al. (8), quienes afirman que altas densidades incrementan el acume y reducen el rendimiento. También los resultados están de acuerdo con lo reportado por Banafunzi y Vicuña (2) quienes afirman que cualquier variación marcada en el medio ambiente, como en este experimento, la densidad de población, provoca una tensión en la planta por la competencia debido al espacio disponible para su desarrollo, el sombreado, nutrición inadecuada y la creación intercultural de un microambiente que favorece la presencia y ataque de plagas y enfermedades, que alteran el rendimiento de las plantas.

CUADRO 6. ALGUNOS COMPONENTES DEL RENDIMIENTO EN SOYA VARIEDAD DAVIS BAJO CINCO DENSIDADES DE POBLACIÓN

<table>
<thead>
<tr>
<th>DENSIDADES REALES A LA COSECHA (miles/ha)</th>
<th>PESO DE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VAINA POR PLANTA (gr.)</td>
</tr>
<tr>
<td>d₈ = 1538</td>
<td>11 ** a</td>
</tr>
<tr>
<td>d₇ = 922</td>
<td>15 ** a</td>
</tr>
<tr>
<td>d₆ = 348</td>
<td>24 ** a</td>
</tr>
<tr>
<td>d₅ = 222</td>
<td>19 ** a</td>
</tr>
<tr>
<td>d₄ = 136</td>
<td>43 ** ab</td>
</tr>
<tr>
<td>** = Diferencias altamente significativas (.01)</td>
<td>**</td>
</tr>
<tr>
<td>NS = No hay diferencia (todos los tratamientos son iguales)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Los tratamientos seguidos de una misma letra son iguales y con letras diferentes son estadísticamente diferentes.

Cuadro 7. ALGUNOS COMPONENTES DEL RENDIMIENTO EN SOYA VARIEDAD BM₂ BAJO CINCO DENSIDADES DE POBLACIÓN

<table>
<thead>
<tr>
<th>DENSIDADES REALES A LA COSECHA (miles/ha)</th>
<th>PESO DE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VAINA POR PLANTA (gr.)</td>
</tr>
<tr>
<td>d₈ = 1338</td>
<td>7 ** a</td>
</tr>
<tr>
<td>d₇ = 616</td>
<td>14 ** a</td>
</tr>
<tr>
<td>d₆ = 314</td>
<td>19 ** a</td>
</tr>
<tr>
<td>d₅ = 162</td>
<td>34 ** a</td>
</tr>
<tr>
<td>d₄ = 102</td>
<td>40 ** ab</td>
</tr>
<tr>
<td>** = Diferencias altamente significativas (.01)</td>
<td>**</td>
</tr>
<tr>
<td>NS = No hay diferencia (todos los tratamientos son iguales)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Los tratamientos seguidos de una misma letra son iguales y con letras diferentes son estadísticamente diferentes.

En los cuadros 6 y 7 se reportan algunos componentes del rendimiento de las dos variedades.

En la variable peso de vainas por planta se observa que en la densidad más alta los rendimientos de vainas/planta fueron los más bajos y en la densidad más baja el rendimiento de vainas/planta fue mayor. En la variable peso de grano por planta los datos nos conducen a hacer la misma observación para las dos variedades estudiadas. Con respecto a la variable peso de 100 gramos no se encontró diferencia, es decir la densidad no afectó al tamaño del grano, aunque sí se observa diferencia entre variedades ya que en Davis el peso fue de 18 gr por 100 granos y en BM₂ de 15 gr por 100 granos.

En los cuadros 8 y 9 se hace una evaluación del rendimiento y para las dos variedades estudiadas. En rendimiento de paja expresado en ton/ha, se observa un efecto muy evidente de la densidad de población dado que se establece un rango entre d₈ y d₄ de 8 ton/ha para la variedad Davis y de igual manera entre d₇ y d₅ para la variedad BM₂ donde el rango fue de 6 ton/ha. En cuanto a rendimiento de grano no existió una variación importante ni entre densidades ni entre variedades.

CONCLUSIONES

Los componentes del rendimiento se expresaron mejor en la densidad más baja. Para la variedad (Davis (d₈ = 136 miles/ha) el peso
de vainas/planta fue de 43 gr, el peso de grano/planta de 29.2 gr. y el peso de 100 granos de 17 gr., y para la variedad BM, (d = 102 miles/ha) el peso de vainas/planta fue de 40 gr., el peso de grano/planta de 25.4 gr y el peso de 100 granos de 15 gr.

En la evaluación del rendimiento, generalmente no se considera el subproducto paja, y en esta investigación se encontró que es un componente valioso en términos de cantidad producida por hectárea y uso en la alimentación de animales domésticos.

Las altas densidades de población son apropiadas cuando se quiera producir biomasa para usarse como forraje verde, abono verde o bien, inoculada la semilla con una cepa apropiada para fijar el nitrógeno atmosférico al suelo.

Cuando la finalidad sea producir grano o semilla de alta calidad, deben preferirse las densidades de población más bajas.

CUADRO 8. EVALUACION DEL RENDIMIENTO DE LA VARIEDAD DAVIS BAJO CINCO DENSIDADES DE POBLACION

<table>
<thead>
<tr>
<th>DENSIDADES REALES</th>
<th>PAJA</th>
<th>GRANO</th>
<th>RENDIMIENTO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A LA COSECHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miles/ha</td>
<td>ton/ha</td>
<td>ton/ha</td>
<td>(PAJA* GRANO) ton/ha</td>
</tr>
<tr>
<td>d = 1538</td>
<td>16.5</td>
<td>5.5</td>
<td>22</td>
</tr>
<tr>
<td>d = 922</td>
<td>8.2</td>
<td>5.8</td>
<td>14</td>
</tr>
<tr>
<td>d = 348</td>
<td>9.7</td>
<td>5.3</td>
<td>15</td>
</tr>
<tr>
<td>d = 222</td>
<td>7.7</td>
<td>3.3</td>
<td>11</td>
</tr>
<tr>
<td>d = 136</td>
<td>8.5</td>
<td>4.5</td>
<td>13</td>
</tr>
</tbody>
</table>

CUADRO 9. EVALUACION DEL RENDIMIENTO DE LA VARIEDAD BM, BAJO CINCO DENSIDADES DE POBLACION

<table>
<thead>
<tr>
<th>DENSIDADE REALES</th>
<th>PAJA*</th>
<th>GRANO**</th>
<th>RENDIMIENTO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A LA COSECHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miles/ha</td>
<td>ton/ha</td>
<td>ton/ha</td>
<td>(PAJA* GRANO) ton/ha</td>
</tr>
<tr>
<td>d = 1338</td>
<td>10.4</td>
<td>5.6</td>
<td>16</td>
</tr>
<tr>
<td>d = 616</td>
<td>7.8</td>
<td>4.2</td>
<td>12</td>
</tr>
<tr>
<td>d = 314</td>
<td>6.4</td>
<td>3.5</td>
<td>10</td>
</tr>
<tr>
<td>d = 162</td>
<td>5.6</td>
<td>3.4</td>
<td>9</td>
</tr>
<tr>
<td>d = 102</td>
<td>4.3</td>
<td>2.7</td>
<td>7</td>
</tr>
</tbody>
</table>

LITERATURA CITADA

1. BANAFUNZI, N.M.S. Y A. SALGADO. 1976. Efecto de la frecuencia de aplicaciun de fertilizantes y 3 densidades de poblaciun sobre los rendimientos de grano de las variedades BM, y CB de soya (inédito).